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Yang-Lee edge singularity of a one-dimensional Ising ferromagnet with arbitrary spin

Xian-Zhi Wang and Jai Sam Kim
Department of Physics, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea

~Received 25 March 1998; revised manuscript received 20 May 1998!

It is shown that for a one-dimensional lattice system in a purely imaginary magnetic field, if the interaction
is finite range, the nature of the Yang-Lee edge singularity is universal, independent of the spin and interaction
strengths. The edge singularity corresponds to the twofold degeneracy of the largest eigenvalues of the transfer
matrix. For the Blume-Emery-Griffiths ferromagnet, the tricritical point and the edge pseudosingularity may
exist. The tricritical point corresponds to the triple degeneracy of the eigenvalues. The edge pseudosingularity
corresponds to the twofold degeneracy of the nonlargest eigenvalues.@S1063-651X~98!11909-8#

PACS number~s!: 05.50.1q, 75.40.Cx, 75.10.Hk, 64.60.Cn
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I. INTRODUCTION

In 1952, Yang and Lee@1# opened a new way to stud
phase transition. They called attention to the zeros of
grand partition function in the complex fugacity plane. Th
showed that in the thermodynamic limit the zero distributi
approaches the positive real axis and gives the trans
point. In application to the ferromagnetic Ising model, th
considered the zeros of the partition function in the comp
magnetic plane and proved the famous circle theorem.
Yang-Lee circle theorem states that the zeros of the parti
function in the complex magnetic plane are distributed o
unit circle. Later this theorem was extended to many fer
magnetic systems, such as the higher-spin Ising model@2#,
Ising models with multiple spin interactions, the quantu
Heisenberg model@3#, the classicalXY and Heisenberg
model @4#, and some continuous spin systems@5#.

Above the zero-field critical temperature, the zeros do
come close to the realh axis in the thermodynamic limit and
the free energy is not analytic inh. There exists a gap in th
imaginaryh axis, where zeros are void. Since the gap s
depends on the temperature, one can envision a critical
h5 ih0(Tc) ~here h0 is real! along which the free energ
becomes singular,F;(h2 ih0)u ~hereu is a critical expo-
nent! @6–8#. This singularity was termed the Yang-Lee ed
singularity by Fisher. Fisher@9# proved that the edge singu
larities h5 ih0 , representing zeros lying closest to real v
ues of the field, are closely analogous to the conventio
critical point and that the relevant scaling laws are ap
cable. Furthermore, the universality should hold for them
and the critical exponents of these singularities are indep
dent of the detailed lattice structure and interaction streng
and depend only on the spatial dimensions and symm
property of order parameter.

Since the edge singularity has the most important in
ence on the equation of state of a ferromagnet, there h
been many studies about it. These include the edge sing
ity in the Ising model@10#, in the hierarchical model@11#, in
the spherical model@12#, in the classicaln-vector models
and the quantum Heisenberg model@13#, as well as in the
relation with conformal invariance in two dimensions@14#
and in the relation with the critical behavior of branch
polymers@15#, etc.

This paper is organized as follows. In Sec. II, it is show
PRE 581063-651X/98/58~4!/4174~7!/$15.00
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that phase transition is marked by the occurrence of the t
fold degeneracy of the largest eigenvalue of the transfer
trix. For a one-dimensional~1D! lattice system in a real mag
netic field, if the interaction is finite range, no pha
transition occurs at a finite temperature. For the same sys
in a purely imaginary magnetic field, the nature of the Yan
Lee edge singularity is universal. In Sec. III the Yang-L
edge singularity of 1D Ising ferromagnets with spin 1/2,
and 3/2 is studied, respectively. In Sec. IV, the Yang-L
edge singularity of the 1D spin-1 Blume-Emery-Griffith
model is studied. In Sec. V, a summary of this paper
given.

II. GENERAL CONDITION OF PHASE TRANSITION

We consider a lattice system in a real magnetic field. W
assume that its transfer matrix is given by anL3L matrix
~L is finite!, whose eigenvalues are obtained from the ch
acteristic equation

lL1a1lL211a2lL221¯1aL21l1aL50, ~1!

whereal are coefficients determined by the model. Letlm be
the largest eigenvalue andN be the total number of the lat
tice points. In the thermodynamic limit, the partition fun
tion, the free energy, the magnetization, and the suscept
ity are given, respectively, by

Z5lm
N , ~2!

f 5F/N52kT ln lm , ~3!

M52S ] f

]hD
T

5b21
1

lm

]lm

]h
, ~4!

S ]M

]h D
T

5b21Flm
21 ]2lm

]h2 2lm
22S ]lm

]h D 2G . ~5!

From Eq.~5!, we deduce that the condition of phase tra
sition (]M /]h)T→` implies that (]lm /]h) or (]2lm /]h2)
become infinity. In order to find the partial derivatives oflm
with respect toh, we differentiate Eq.~1! with respect toh,
4174 © 1998 The American Physical Society



on

b

i
th
o
th

ra
-
o

ic
r.
nd

l
o

q.
t.

e
n-
tion
lat-
te,
se

he
ely

e-
ere
sfer
of

t in
sal.

i-
the

pin

PRE 58 4175YANG-LEE EDGE SINGULARITY OF A ONE- . . .
]lm

]h (
l 50

L21

~L2 l !allm
L2 l 211(

l 50

L
]al

]h
lm

L2 l50, ~6!

]2lm

]h2 (
l 50

L21

~L2 l !allm
L2 l 21

1S ]lm

]h D 2

(
l 50

L22

~L2 l !~L2 l 21!allm
L2 l 22

12
]lm

]h (
l 50

L21

~L2 l !
]al

]h
lm

L2 l 211(
l 50

L
]2al

]h2 lm
L2 l50,

~7!

wherea051. Since in generalal and their derivatives with
respect toh do not diverge, the condition of phase transiti
requires that

(
l 50

L21

~L2 l !allm
L2 l 2150. ~8!

The condition of phase transition is determined by Eqs.~1!
and ~8!. Equation~1! is an algebraic equation of orderL.
Equation~8! acts as a constraint equation to be satisfied
the largest eigenvalue at the critical point. Thus Eq.~1! has
(L21) distinct roots. Therefore, the largest eigenvalue
twofold degenerate. We obtain an interesting conclusion
for a lattice system in a real magnetic field, the condition
phase transition requires that the largest eigenvalue of
transfer matrix be twofold degenerate. In his solution of the
square lattice spin-1/2 Ising model, Onsager@16# noted that
below the critical point, the largest eigenvalue is degene
~twofold degeneracy!. The occurrence of the twofold degen
eracy of the largest eigenvalue is a sufficient condition
phase transition@17,18#.

Let us expand the largest eigenvalue around the crit
point, lm5lm

0 1dl, and determine the critical behavio
Here lm

0 is the largest eigenvalue at the critical point a
satisfies Eqs.~1! and ~8!. Substitutinglm into Eq. ~1! and
expanding, we get

(
l 50

L

al~lm
0 1dl!L2 l5b2~dl!21b3~dl!31b4~dl!41¯

50, ~9!

where

bn5 (
l 50

L2n

CL2 l
n al~lm

0 !L2 l 2n. ~10!

Keeping the larger terms, we get

b21b3dl1b4~dl!250 ~11!

or

lm5lm
0 1

2b36Ab3
224b2b4

2b4
. ~12!
y

s
at
f
e

te

f

al

From Eqs.~4! and~5! we obtain the singular parts ofM and
(]M /]h)T ,

M;~b3
224b2b4!21/2 ~13!

and

S ]M

]h D
T

;~b3
224b2b4!23/2. ~14!

Thus we see that the phase transition condition~twofold de-
generacy! requiresb3

224b2b450, which impliesM→`. On
the other hand, when the magnetic field is real,M should be
finite. Therefore we find thatfor any lattice system in a rea
magnetic field, if its transfer matrix is finite dimensional, n
phase transition occurs at a finite temperature.

If L were infinite, we could not have an expansion as E
~9! and the origin of singularity would be quite differen
Thus the above conclusion will not be valid in general.

For a 1D lattice system in a real magnetic field, if th
interaction is finite range, the transfer matrix is finite dime
sional, independent of lattice size. So no phase transi
occurs at a finite temperature. For a higher-dimensional
tice system in a real magnetic field, if the lattice size is fini
then its transfer matrix is finite dimensional and no pha
transition occurs. These are well-known facts@19,20#.

For a 1D lattice system, let us turn our attention to t
more interesting case in which the magnetic field is pur
imaginary. If all eigenvalues are real, from Eq.~2!, we know
Z→lm

N.0 in the thermodynamic limit and no Yang-Lee z
ros appear. Therefore, we deduce that in the gap wh
Yang-Lee zeros are absent, the eigenvalues of the tran
matrix must be real. We can use the general condition
phase transition, Eqs.~1! and ~8!, to get the Yang-Lee edge
singularity.

We see that the singularity stems from the square roo
Eq. ~12!. This means that the critical exponents are univer
Thus we conclude thatfor a 1D lattice system in a purely
imaginary magnetic field, if its transfer matrix is finite d
mensional and the Yang-Lee edge singularity exists, then
nature of edge singularity is universal, independent of s
and interaction strengths. We will confirm this in later sec-
tions.

III. 1D SPIN- S PURE ISING FERROMAGNET

The partition function of a 1D spin-S Ising model in the
presence of a magnetic fieldh is given by

Z5(
$Si %

expS b(
j 51

N

JSjSj 111bh(
j 51

N

Si D , ~15!

where Si52S,2S11,...,S21,S and J.0. The periodic
boundary condition is imposed so thatSN115S1 . The trans-
fer matrix is given by

^Sj uVuSj 11&5exp@bJSjSj 111bh~Sj1Sj 11!/2#. ~16!

The transfer matrix is anL3L matrix with L52S11. Then
the partition function can be expressed as
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Z5(
Sj

^S1uVuS2&^S2uVuS3&¯^SNuVuS1&

5Tr VN5l1
N1¯1lL

N , ~17!

wherel1 ,...,lL are the eigenvalues of the transfer matr
given by

lL1a1lL211a2lL221¯1aL21l1aL50. ~18!

Because of symmetry,al(2h,T)5al(h,T). We will con-
sider the case whenh is purely imaginary,h5 ihI . In this
caseal will be all real.

A. S51/2

The transfer matrix is

V5S eb~J12h!/4 e2bJ/4

e2bJ/4 eb~J22h!/4D .

The eigenvalues can be determined easily,

l1,25ebJ/4@coshbh/26~sinh2bh/21e2bJ!1/2#. ~19!

We consider the case in whichh is purely imaginary. The
two eigenvalues are real or complex conjugate dependin
the value of (sinh2bh/21e2bJ). If (sinh2bh/21e2bJ)>0,
the two eigenvalues are real andl1>l2 . In the thermody-
namic limit, we obtain the free energy,

f 52J/42b21ln@coshbh/21~sinh2bh/21e2bJ!1/2#,
~20!

and the magnetization,

M5
sinh bh/2

~sinh2bh/21e2bJ!1/2. ~21!

Thus we have

S ]M

]h D
T

5
b coshbh/2

~sinh2bh/21e2bJ!1/22
b sinh bh/2 coshbh/2

~sinh2bh/21e2bJ!3/2 .

~22!

The phase transition condition, (]h/]M )T50, requires that
sinh2bh/21e2bJ50. Let h5 ih0 . The critical line is given
by

sin bch0/25e2bcJ/2. ~23!

From above we find that the occurrence of the Yang-L
edge singularity corresponds to the twofold degeneracy
eigenvalues of the transfer matrix.

If sinh2 bh/21e2bJ,0, the two eigenvalues are comple
conjugate

l1,25ebJ/4@coshbh/26 i usinh2bh/21e2bJu1/2#. ~24!

On the other hand, the Yang-Lee zeros are given byZ50,
i.e.,
,

on

e
of

S sinh2
bh

2
1e2bJD 1/2

5 i cosh
bh

2
tan p

2n11

2N

~n50,1,...,N21!. ~25!

We see that if sinh2bh/21e2bJ,0, Yang-Lee zeros exis
and are given by

sin2
bhI

2
5sin2p

2n11

2N
1e2bJ/2cos2 p

2n11

2N
. ~26!

Therefore, we find that in the gap the eigenvalues are
and no Yang-Lee zeros appear. At the edgehI56h0(Tc),
the eigenvalues become twofold degenerate precisely. On
rest of the imaginary magnetic field axis, the complex co
jugate eigenvalues appear and also Yang-Lee zeros app

Let us define the critical exponents near the critical line
the ordinary sense:~i! M (h5 ih0)→(T2Tc)

b; ~ii ! M (T
5Tc)→(h2 ih0)1/d; ~iii ! the specific heatC(h5 ih0)→(T
2Tc)

2a; ~iv! x5(]M /]h)(h5 ih0)→(T2Tc)
2g; ~v! the

correlation lengthj(h5 ih0)→(T2Tc)
2n; ~vi! the spin-spin

correlation functiong(r )→r 2d122h.
From Eqs.~20!–~22! we find thatb521/2, d522, a

53/2, andg53/2. Other exponents can be obtained fro
the spin-spin correlation function that has been calculate
@21,22#. The result is

g~r !5~12M2!e2r /j, ~27!

where

j5@ ln~l1 /l2!#21. ~28!

Using Eq. ~19! we find that j(h5 ih0)→(T2Tc)
21/2 as

T→Tc and n51/2. From Eq.~27!, we see thath is not
definite. If we takeh521, the critical exponents satisfy a
scaling relations: a12b1g52, b(d21)5g, g5n(2
2h), d5(d122h)/(d221h), anda522nd.

B. S51

The transfer matrix is given by

V5S eb~J1h! ebh/2 e2bJ

ebh/2 1 e2bh/2

e2bJ e2bh/2 eb~J2h!
D .

The eigenvalues of the transfer matrix are obtained from

l31a1l21a2l1a350, ~29!

where

a152@11ebJ~ebh1e2bh!#, ~30!

a25~ebJ21!~ebh1e2bh!1e2bJ2e22bJ, ~31!

a35e22bJ2e2bJ12~ebJ2e2bJ!. ~32!

We consider the case in whichh is purely imaginary. All of
a1 , a2 , and a3 are real. DefineQ5(3a22a1

2)/9 and R
5(9a1a2227a322a1

3)/54. D5Q31R2 is the discriminant.
If D<0, the eigenvalues are real,
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l152A2Q cos~u/3!2a1/3, ~33!

l252A2Q cos~2p/31u/3!2a1/3, ~34!

l352A2Q cos~4p/31u/3!2a1/3, ~35!

where cosu5R/A2Q3. The general condition of phase tra
sition, Eqs.~1! and~8!, gives the Yang-Lee edge singularit

lm
3 1a1lm

2 1a2lm1a350, ~36!

3lm
2 12a1lm1a250. ~37!

Equation~37! gives

lm5A2Q2a1/3. ~38!

Matching Eq.~38! with, say, Eq.~33!, gives cos(u/3)51/2.
Thus u5p and lm5l15l3 . We see that the Yang-Le
edge singularity does correspond to the twofold degene
of the largest eigenvalue. The condition of the Yang-L
edge singularity becomes cosu5215R/A2Q3. Substituting
the expressionsR andQ into R52A2Q3 gives

a2
3/272a1

2a2
2/1081a3

2/42a1a2a3/61a3a1
3/2750 ~R,0!,

~39!

wherea1 , a2 , and a3 are given by Eqs.~30!–~32! with h
5 ih0 .

Near the critical line (u5p), the largest and next larges
eigenvalues are given by

l5A2Q2a1/36~)/3Q!A2D. ~40!

We see that the nature of singularity is indeed the same a
the case ofS51/2. Therefore critical exponents are the sa
in both cases. The critical line is plotted in Fig. 1.

C. S53/2

The transfer matrix is given by

V5S c9d3 c3d2 c23d c29

c3d2 cd c21 c23d21

c23d c21 cd21 c3d22

c29 c23d21 c3d22 c9d23

D ,

FIG. 1. The critical lines of 1D Ising ferromagnets. The unit
T is k/J.
cy
e

in
e

wherec5ebJ/4 and d5ebh/2. The eigenvalues are obtaine
from

l41a1l31a2l21a3l1a450, ~41!

where

a152c9~d31d23!2c~d1d21!, ~42!

a25~c102c6!~d41d24!1~c102c26!~d21d22!

1~c22c22!1~c182c218!, ~43!

a35~c2522c2112c72c11!~d31d23!

1~c21722c291c31c152c19!~d1d21!, ~44!

a45~12c!6~11c!6~11c2!6~12c1c2!

3~11c1c2!~11c4!2~12c21c4!c220. ~45!

We consider the case in whichh is purely imaginary. All
of a1 , a2 , a3 , anda4 are real. Lety1 be a real root of the
cubic equation,

y32a2y21~a1a324a4!y1~4a2a42a3
22a1

2a4!50.
~46!

Then the eigenvalues are given by the four roots of the eq
tion, l21A6l1B650, i.e.,

l5
1

2
@2A61AA6

2 24B6# ~47!

and

l5
1

2
@2A62AA6

2 24B6#, ~48!

where

A65
1

2
@a16Aa1

224a214y1#, B65
1

2
@y17Ay1

224a4#.

~49!

In the gap, the eigenvalues are real. Sincea1,0, we identify
the largest eigenvalue with

lm52
1

4
a11

1

2
Aa1

224a214y11
1

2
AA2

2 24B2.

~50!

The condition of phase transition requires thata1
224a2

14y150 or A2
2 24B250. However, a1

224a214y150
does not correspond to the edge singularity. So the e
singularity corresponds toA2

2 24B250, i.e.,

@a12Aa1
224a214y1#258@y11Ay1

224a4#. ~51!

We see again that the Yang-Lee edge singularity does co
spond to the twofold degeneracy of the largest eigenvalu

We can start with the general condition of phase tran
tion, Eqs.~1! and ~8!, which gives Eq.~41! and

4lm
3 13a1lm

2 12a2lm1a350. ~52!
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We obtain the same result as it should be. The critical lin
plotted in Fig. 1.

From Eq. ~49!, we see that the nature of singularity
indeed the same as in the case ofS51/2. Therefore critical
exponents are the same in all cases,S51/2,1,3/2.

IV. 1D SPIN-1 BLUME-EMERY-GRIFFITHS MODEL

The spin-1 Ising model with nearest-neighbor exchan
interactions, both bilinear and biquadratic, and with
crystal-field interaction was introduced by Blume, Eme
and Griffiths@23# to describe phase separation and superfl
, w

ou

e

d

is

e

,
d

ordering in He3-He4 mixtures. The model can be used as
lattice gas model to describe phase transitions in simple
multicomponent fluids@24#. The model is now considered
standard model in the tricritical phenomena@25#. The Hamil-
tonian is given by

H52(̂
i j &

@JSiSj1KSi
2Sj

21 1
2 LSiSj~Si1Sj !2DSi

21hSj #,

~53!

whereJ, K, L, andD are interaction strengths. For the 1
case, the transfer matrix is given by
^Sj uVuSj 11&5exp@bJSjSj 111bKSj
2Sj 11

2 1 1
2 bLSjSj 11~Sj1Sj 11!2 1

2 bD~Sj
21Sj 11

2 !1 1
2 bh~Sj1Sj 11!#, ~54!

or explicitly

V5S eb~J1K2D1L1h! eb~2D1h!/2 eb~2J1K2D!

eb~2D1h!/2 1 e2b~D1h!/2

eb~2J1K2D! e2b~D1h!/2 eb~J1K2D2L2h!
D .

The eigenvalues of the matrix are obtained from

l31a1l21a2l1a350, ~55!

where

a152@11eb~J1K2D!~eb~2h2L !1eb~h1L !!#, ~56!

a252e2bD~ebh1e2bh!1eb~J1K2D!~eb~L1h!1e2b~L1h!!1e2b~J1K2D!2e22b~J2K1D!, ~57!

a35e22b~J2K1D!2e2b~J1K2D!22e2b~J2K12D!1eb~J1K22D!~ebL1e2bL!. ~58!
,
the

tions
-

Following the same analyses as in the preceding section
find that the edge singularity is still given by Eq.~39!. The
nature of singularity remains the same as in the previ
cases.

If u50 or 2p, i.e., R5A2Q3, then the eigenvalues ar
lm5l152A2Q2a1/3 and l25l352A2Q2a1/3. This
means that the nonlargest eigenvalues become twofold

FIG. 2. The typeA critical line of a 1D BEG ferromagnet. The
unit of T is k/J. L50, K51.5J, andD50.5J. The solid line is the
critical line and the dotted line is the pseudocritical line.
e

s

e-

generate. It is easy to show that, nearu50 or 2p, no singu-
larity appears. Therefore, this is apseudosingularity.

The ferromagnetic condition requires that (T50, h50)
be the unique critical point whenh is real. On the other hand
in order to guarantee the existence of edge singularity,
solution of Eq.~39! for h must be purely imaginary. Also in
the gap the eigenvalues must be real. These considera
give L50 andJ.0, under which the Yang-Lee circle theo

FIG. 3. The typeB critical line of a 1D BEG ferromagnet. The
unit of T is k/J. L50, K50.5J, andD51.25J.
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rem is valid. We now discuss several cases.

A. J1K2D>0

If J1K.0, asT→0 andh→0, a1→22eb(J1K2D), a2

→e2b(J1K2D), and a3→2e2b(J1K2D). So R→
(21/18)e3b(J1K2D),0 andR52A2Q3. (T50, h50) is a
critical point. We have calculated critical lines with differe
sets of (K,D). We found the following phenomena.~i! If
there exists a point (Tt , iht) satisfyingQ5R50, i.e., 3a2

2a1
2527a32a1

350, then the critical line exists between
<Tc<Tt . The end point is the tricritical point (Tt , iht). The
tricritical point corresponds to the triple degeneracy of
eigenvalues. Near the tricritical point, the nature of singu
ity is identical to that of the edge singularity. Therefore t
tricritical exponents are all the same. The pseudocritical
of the edge pseudosingularity emerges also from the tric
cal point, as shown in Fig. 2. The physical picture is that
the gap the eigenvalues are real and no Yang-Lee zeros
pear. At the edge, the nonlargest eigenvalues become
fold degenerate precisely. On the rest of the imaginary m
netic field axis, the eigenvalues become complex and Ya
Lee zeros appear. We call this kind of critical line typeA.
~ii ! If the tricritical point does not exist, the shape of th
critical line is similar to that of a pure Ising ferromagnet wi
S51. AsTc→`, bch0 approaches 2p/3, as shown in Fig. 3.
We call this type of critical line typeB.

If J1K,0, the solution of Eq.~39! for h is not purely
imaginary and the Yang-Lee circle theorem is not valid.

B. J1K2D<0

If D.0, as T→0 and h→0, a1→21, a2→0, and a3
→0. SoR→1/27.0 and (T50, h50) is not a critical point.
We have tried several different sets of (K,D). We found the
following phenomena.~i! For some combinations ofJ, K,
and D, the critical line begins from a tricritical point an
ends at infinity. The rest is the pseudocritical line, beginn
from T50 andh50 and ending at the tricritical point, a
shown in Fig. 4. We call this kind of critical line typeC. ~ii !
For other combinations ofJ, K, and D, no Yang-Lee edge
singularity exists. However, the edge pseudosingularity
ists. To our surprise, the Yang-Lee circle theorem is va

FIG. 4. The typeC critical line of a 1D BEG ferromagnet. The
unit of T is k/J. L50, K50.5J, andD54J. The solid line is the
critical line and the dotted line is the pseudocritical line.
e
-

e
i-

ap-
o-

g-
g-

g

-
,

but no edge singularity exists. The pseudocritical line
shown in Fig. 5. We call this kind of pseudocritical line typ
D.

If D,0, the solution of Eq.~39! for h is not purely imagi-
nary and the Yang-Lee circle theorem is not valid.

C. J1K2D50

If D.0, asT→0 andh→0, a1→23, a2→3, anda3→
21, andR→0 andQ→0. This is a marginal case. We hav
calculated several cases. It is found that either the edge p
dosingularity~type D) or the edge singularity~type B) ex-
ists, depending on the combinations ofJ, K, and D, as
shown in Figs. 3 and 5. IfD,0, the solution of Eq.~39! for
h is not purely imaginary and the Yang-Lee circle theorem
not valid.

V. CONCLUSION

We have shown that phase transition is marked by
occurrence of the twofold degeneracy of the largest eig
value of the transfer matrix. For a 1D lattice system in a r
magnetic field, if the interaction is finite range, no pha
transition occurs at a finite temperature. For the same sys
in a purely imaginary magnetic field, the nature of the Yan
Lee edge singularity is universal, independent of spin a
interaction strengths. The critical exponents satisfy all sc
ing relations. The edge singularity corresponds to the tw
fold degeneracy of the largest eigenvalues of the tran
matrix. For a one-dimensional spin-1 Blume-Emery-Griffit
model withL50 andJ.0, the Yang-Lee circle theorem i
valid in general, except for some special cases. For so
combinations ofJ, K, andD, the tricritical phenomenon and
the edge pseudosingularity exist. The edge pseudosingul
corresponds to the twofold degeneracy of the nonlarges
genvalues. The tricritical point corresponds to the triple d
generate eigenvalues. The tricritical exponents are the s
as those of the edge singularity. For some combinations oJ,
K, and D, only the edge pseudosingularity exists, but t
Yang-Lee circle theorem is still valid. All one-dimension
Ising models with arbitrary spin, including higher-order a
finite-range interactions, belong to the same universa
class of the edge singularity.
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FIG. 5. The typeD pseudocritical line of a 1D BEG ferromag
net. The unit ofT is k/J. L50, K52J, andD54J.
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